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Motivated by the abundance of directed synaptic couplings in a real biological neuronal network, we
investigate the synchronization behavior of the Hodgkin-Huxley model in a directed network. We start from the
standard model of the Watts-Strogatz undirected network and then change undirected edges to directed arcs
with a given probability, still preserving the connectivity of the network. A generalized clustering coefficient
for directed networks is defined and used to investigate the interplay between the synchronization behavior and
underlying structural properties of directed networks. We observe that the directedness of complex networks
plays an important role in emerging dynamical behaviors, which is also confirmed by a numerical study of the
sociological game theoretic voter model on directed networks.
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Research of complex systems which brings complex net-
works into focus has been an intensive and successful area in
physics and other disciplines �1,2�. Within the complex net-
work research community, dynamic behaviors in complex
networks have been drawn much attention. Among a variety
of collective dynamic behaviors, synchronization is the one
of the most popular research topics �3–5�, and it has been
shown that the connection topology of complex networks
greatly influences the degree of synchronization �2,6�. Re-
cently, the question of how to increase the synchronizability
via weighted and asymmetric couplings has been pursued
intensively �7�. Especially, it has been shown that the syn-
chronization is enhanced significantly when the couplings
from old to young vertices are more abundant than from
young to old, indicating the importance of the directedness
of complex networks �8�. As a good and real example of
synchronization, the synchronous firing of action potential in
neuronal networks has been studied �9�. In Ref. �10�, the
Hodgkin-Huxley �HH� model �11� has been simulated on the
Watts-Strogatz network �12�, which has revealed that the un-
derlying small-world network structure enhances synchroni-
zation substantially. Different from real biological neuronal
networks, where synaptic couplings connecting two neurons
are naturally directed, it has been assumed that the synaptic
couplings are undirected. In contrast, the neuronal network
of the nematode Caenorhabditis elegans �C. elegans� has
been analyzed and 90% of synaptic couplings have been
shown to be directed �13�. In other words, only 10% of syn-
aptic couplings are bidirectional.

In the present paper, we fully consider the directions of
edges and investigate in a systematic way how the directed-
ness of complex networks changes collective dynamical be-
haviors. Both the HH model in biology and the sociological
voter model are studied on directed model networks, and it is
unanimously found that as the more bidirectional edges are
changed to unidirectional ones the system as a whole exhib-
its a worse ordering behavior. We believe that the conclusion

should hold in a variety of different natural and social sys-
tems since the sparser bidirectional edges are the less effi-
cient the information flow becomes.

The directed small-world network in the present study is
constructed as follows: �1� The Watts-Strogatz undirected
network is first built in the same way as in Ref. �12�. In
detail, starting from the locally connected network of one-
dimensional lattice with the connection range 15 correspond-
ing to the average degree �K�=30, each edge is picked and
then randomly rewired with the probability P to other ran-
domly chosen vertex. The size N of the network is defined as
the total number of vertices and we use N=400 below. �2�
Each edge built above has both directions, one incoming and
the other outgoing, and thus we substitute each undirected
edge as two arcs with opposite directions �we in this work
call a directed edge as an arc�. Each pair of arcs is visited one
by one, and then with the probability �, the direction of
randomly chosen one arc in the given pair is reversed. It
should be noted that the network resulting from the above
procedure is a directed network and double links connecting
the same two vertices are also allowed. We believe that
double edges exist not only in a biological neuronal network,
where two neurons can have two synaptic couplings, but also
in a sociological network, where two individuals can have
two different ways of information transfer. In the viewpoint
of dynamics in this work, the two arcs connecting the same
two vertices are equivalent to one arc with double weights.
Consequently, the resulting network from the above proce-
dure is a directed network with double arcs allowed �or
double weights allowed�, characterized by two parameters P
and �. When �=0, the network is identical to the WS undi-
rected network, whereas for the other limiting case of �=1,
all edges in the network become directed. By changing the
parameter � from zero to unity, one can systematically
change the density of directed edges, while still preserving
the average degree �K� �both the number of arcs per vertex
and the number of directly attached vertices per vertex are
conserved�. It should be noted that if directions of arcs are
not taken into account the directed network at any � has
exactly the same structure as the undirected one.*Corresponding author. Electronic address: beomjun@skku.edu
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We first investigate structural properties of our directed
network and measure the characteristic path length and the
clustering coefficient. The former, denoted as l and defined
by l−1��i�jdij

−1 /N�N−1� with the shortest path length dij

connecting vertices i and j, is computed in the same way as
for an undirected network �14�. The shortest paths should be
computed with the direction taken into account, and accord-
ingly, dij�dji for a directed network.

The clustering coefficient for an undirected network has
usually been defined as �12�

C�0� �
1

N
�

i

Ci
�0�,

Ci
�0� �

2Ei

ki�ki − 1�
, �1�

where Ei is the number of edges in the set of neighbors of the
vertex i. If all neighbor vertices of i �with the degree ki� are
connected to each other, Ei=ki�ki−1� /2 and thus Ci

�0�=1.
For a directed network, however, the above definition of

the clustering coefficient needs to be changed. In this paper,
a quantity �a �we call it the influence� is defined for the triad
a composed of three vertices a= �i , j ,k� as follows: �1� Count
the number ni of vertices �including itself� who can get a
message from i. For example, in Fig. 1�a�, i can send its
message to j and k, and thus we assign ni=2. In the same
way, nj =1 and nk=0 are obtained in Fig. 1�a�. On the other
hand, in Fig. 1�b�, nj =2 is assigned since j can send a
message to k and then get it back from k. In Fig. 1�c�,
ni=nj =nk=3 since a message from anyone will be eventually
delivered to everyone. �2� Since ni�3, we normalize to
obtain �a=�i,j,k���ni+nj +nk� /9 so that 0��a=�i,j,k��1. In
Fig. 1, �a� �= �2+1+0� /9=1/3, �b� �= �2+2+2� /9=2/3,
and �c� �= �3+3+3� /9=1, are found, respectively. Although
the examples of triad connections in Fig. 1 have an identical
number of arcs �six arcs�, it is clear that the standard defini-
tion of the clustering coefficient cannot capture the differ-
ence. We define the clustering coefficient C�d� for a directed
network as

C�d� �
1

N
�

i

Ci
�d�,

Ci
�d� � 	 1

Ei
�
a=1

Ei

�a
Ci
�0� =

2

ki�ki − 1��a=1

Ei

�a, �2�

where a=1,2 , . . . ,Ei is the index for triads connected to the
vertex i, and �a is the influence defined above and shown in
Fig. 1. Since 0��a�1, we get �a�a�Ei and consequently
Ci

�d��Ci
�0� and C�d��C�0�.

Figure 2 displays �a� l�P ,�� and C�d��P ,�� as density
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FIG. 1. Definition of the influence � of a triad. We define ni for
the vertex i as the number of vertices which can get a message from
i. A path connecting itself �e.g., i→ j→k→ i in �c�� is also counted.
In �a�, i can send its message both to j and k and we assign the
number ni=2 for i; nj =1, nk=0 are similarly assigned. In �b�,
ni=nj =nk=2, since, e.g., j can send a message to k and then can get
it back from k. In �c�, ni=nj =nk=3 since everyone gets a message
from everyone. The influence � for a given triad �i , j ,k� is defined
as �= �ni+nj +nk� /9.

FIG. 2. �Color online� Density plots for �a� the characteristic
path length l and �b� the clustering coefficient C�d� in the plane of
the rewiring probability P and the probability � of making directed
arcs. Note that P is in a log scale while � is not in �b�. As P is
increased, both l and C�d� are found to decrease consistent with Ref.
�12�. When P=10−2–10−1, the network has short path length to-
gether with large degree of clustering, manifesting the small-world
behavior. As more edges become directed arcs, i.e., as � is in-
creased, l becomes larger while C�d� becomes smaller, weakening
the small-world behavior. The network of the size N=400 at the
average degree �K�=30 has been used.

SUNG MIN PARK AND BEOM JUN KIM PHYSICAL REVIEW E 74, 026114 �2006�

026114-2



plots. At a fixed value of �, the increase of P results in
smaller l and C�d�, consistent with the result for the undi-
rected network in Ref. �12� corresponding to �=0. The in-
termediate region of P has short characteristic path length
but with a relatively high degree of clustering, manifesting
the so-called small-world behavior �12�. In contrast, as the
network has more directed arcs �i.e., as � is increased�, the
small-world behavior becomes weaker: The path length is
increased and the clustering coefficient becomes smaller. The
structural changes related with the changing bidirectional
edges to unidirectional arcs are naturally expected to be re-
flected in dynamic properties of the system on networks. As
more edges are changed to directed arcs, the path connecting
two vertices becomes longer, and the spread of information
within local neighbors becomes less efficient. We believe
that our generalization of the clustering coefficient to capture
the difference between directed and undirected networks can
be very useful in similar studies. In Ref. �15�, a vector called
the triad census has been proposed to measure the frequen-
cies of 16 isomorphism classes of all possible directed cou-
pling structures of three vertices. Among them seven corre-
spond to complete 3-graphs like in Fig. 1. Although it should
be possible to use the concept of the triad census �15� to
characterize the clustering property of directed networks, we
believe that our suggestion of the clustering coefficient is
practically much more useful and convenient.

In order to study the effect of directedness of networks on
dynamic cooperative behaviors in detail, we first study the
Hodgkin-Huxley �HH� model in neuroscience on the directed
network structure built as described above. The HH model is
the one of the most representative models describing dynam-
ics of a neuronal system. Originally, based on the result of
physiological experiments of a neural system of a squid, the
HH model equations have been proposed to describe the
membrane action potential �11,16,17�. In the present work,
we use the HH coupled differential equations in Ref. �10� but
with parameters obtained from physiological experiments of
neurons in the part CA3 in hippocampus which plays an
important role in learning and memory �18�. In detail, the
membrane capacitance per unit area Cm=1.0 �F/cm2 and
the external current density Ie=0.9 �A/cm2 are used, and
maximum conductances for the leakage channel, the sodium,
and the potassium ionic channels, are gL=0.15 �−1 /cm2,
gNa=50.0 �−1 /cm2, gK=10.0 �−1 /cm2, respectively �see
Ref. �10� for HH coupled equations�. The synaptic current
between presynaptic and postsynaptic neurons is treated in
the same way as in Ref. �10�. In this work, a direct current is
injected into 40�=N /10� contiguous neurons between the on-
set �100 ms� and the offset �1000 ms� times, and the sixth-
order Runge-Kutta method with the time step �t=0.01 ms is
used to integrate HH equations. In order to get better statis-
tics, 500 independent runs are performed and then averaged
over different network realizations.

We below use the synchronization order parameter in
Refs. �3,5� to study the interplay between the dynamic syn-
chronization behavior and the underlying directed network
structure. We denote ti,n as the nth firing time of the neuron i,
and define the corresponding phase variable 	i�t� as

	i�t� � 2

t − ti,n−1

ti,n − ti,n−1
, �3�

via the simplification that 	�t� �ti,n−1� t� ti,n� increases lin-
early from 0 to 2
 between the two successive firings at ti,n−1
and ti,n. The synchronization order parameter is then defined
as

� �
1

N��
i=1

Nfire

ei	i�t�� , �4�

where �¯� represents the time average after achieving a
steady state, and Nfire is the number of neurons which fired at
least twice �otherwise 	�t� is not defined�. For convenience,
we have not included winding number term in Eq. �3�; it
does not change the value of �.

In Fig. 3, we compare �a� the structural small-world prop-

FIG. 3. �Color online� Density plots for �a� the small-world
property measured by C�d��P ,�� /C�d��0,0�− l�P ,�� / l�0,0� and �b�
the synchronization order parameter ��P ,�� computed for the
Hodgkin-Huxley model in the �-P parameter space. As either � of
P becomes larger the network loses both the structural small-world
property and the dynamical synchronizability.
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erty and �b� the dynamic synchronization behavior. In order
to measure the former in Fig. 3�a�, we normalize the cluster-
ing coefficient and the characteristic path length and then
compute the difference, i.e., ��C�d��P ,�� /C�d��0,0�
− l�P ,�� / l�0,0�. If � has a sufficiently large value, the net-
work has a relatively large clustering coefficient and a rela-
tively short path length, corresponding to the small-world
region in Ref. �12�. It is clearly displayed in Fig. 3�a�, that as
either P or � is increased, the network begins to exhibit the
small-world property, which is destroyed eventually when P
or � is increased further. The structural importance of the
directedness of networks is easily seen here: As more and
more edges are changed to directed arcs, the network loses
the small-world property. In Fig. 3�b�, we show the synchro-
nization order parameter � in Eq. �4� in the �-P plane. Al-
though the region with large � values is much smaller than
the region with the small-world behavior in Fig. 3�a�, it is
unambiguously shown that the existence of directed arcs pro-
hibits the system from being better synchronized. We believe
that if one neglects the directedness of networks in the study
of structural and dynamic properties of networks, the results
should be taken cautiously. Especially, for a study of neu-
ronal networks, in which much more synaptic couplings are
directed than undirected, the conclusion reached by using an
undirected network may change significantly if one takes the
direction of synaptic couplings into full account.

We next study a sociological game theoretic model called
the voter model �19�, defined on a directed network, to check
the generality of our conclusion drawn above for a biological
system. In the voter model, the ith player can have two dif-
ferent opinions �i= ±1, and the time evolution of �i�t� is
described as follows: �1� Pick one voter �call her i� in the
network randomly. �2� Pick another voter �call her j� ran-
domly among i’s incoming neighbors. �3� The voter i
changes her opinion to the j’s one, i.e., �i�t+1�=� j�t�. The
directedness of a given network enters through the step �2�
above: Each voter is influenced only by her neighbor voters
connected by incoming arcs. We use the random initial con-
dition to start with, and as time proceeds, the system ap-
proaches one of two absorbing states characterized by a per-
fect ordering, i.e., �i=1 or �i=−1 for all i. In previous
studies of voter models, the active bond is defined as the one
connecting two voters with different opinions, and the key
quantity to measure is the fraction � of active bonds given by

� =

�
i=1

N

�
j�i

�in�
�1 − �i� j�/2

�
i=1

N

Ki
�in�

, �5�

where i
�in� is the set of incoming neighbors of i, and the

incoming degree Ki
�in��i

�in�. The active bond has different
signs of the opinion �i� j =−1, and consequently
�1−�i� j� /2 takes the value either 1 or 0, depending on the
activity of the bond.

In Fig. 4, the time evolution of � is shown for various
values of � at the rewiring probability P=0.1 for the directed
network of the size N=400 with the average degree �K�
=30. It is displayed that as � is increased the convergence of
opinions, i.e., �→0, takes longer time, and eventually be-
comes impossible for large enough values of �. This obser-
vation, in parallel to the above finding of the weaker syn-
chronizability of the HH model on directed networks,
implies that the existence of directed arcs inhibits an efficient
flow of information, making global collective behaviors less
plausible to occur.

In conclusion, we have studied dynamic behaviors of the
biological neuron model and the sociological voter model on
directed networks, built from the standard network model of
Watts and Strogatz by changing undirected edges to directed
arcs with the probability �. In the process of making directed
networks numbers of connected vertices and arcs are not
changed, and the characteristic path length does not change
significantly in a broad range of �; this suggests that the
connectivity is not altered much from the undirected coun-
terpart. Unanimously found is that as the network becomes
more directed by the increment of �, a global emergence of
collective behaviors �the synchronization in the former and
the opinion convergence in the latter models� becomes
harder to develop. An extended definition of the clustering
coefficient for directed networks has also been suggested,
and the dynamic behaviors have been studied in relation with
the network structures, captured by the characteristic path
length and the clustering coefficient. However, we note that
the region of the structural small-world behavior in Fig. 3�a�
and the region of the enhanced synchronizability in Fig. 3�b�
do not overlap completely. The origin of this discrepancy is

FIG. 4. �Color online� Fraction ��t� of active bonds in the voter
model on directed networks as a function of time t. From bottom to
top, curves correspond to �=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. As the
network becomes more directed, i.e., as � is increased, the ordering
towards the absorbing state ��i=1 or −1 for all i� takes longer time,
and the complete ordering becomes impossible for a sufficiently
large � even at t→�. Directed networks of the size N=400 with
�K�=30 and the rewiring probability P=0.1 are used as an under-
lying interaction structure of the voter model.
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not clear at present and needs further study in the future. We
believe that our conclusion of decreased synchronizability of
directed networks is very general beyond the model systems
studied in this work and that the neglect of the directions of
edges in network studies needs to be done very carefully.
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